CS461 – RECITATION 07 MACHINE LEARNING PRINCIPLES

Daize Dong 2025-10-27

TODAY'S CONTENT

- Markov Model Assignment
- Quiz 03

MARKOV MODELS

- 1. States: $S = \{s_1, s_2, ..., s_N\}$
- 2. Distributions: π , where $\pi(i) = P(z_1 = i)$
- 3. Transition Matrix: A, where $A(i,j) = P(z_t = j \mid z_t 1 = i)$
- 4. Emission Matrix: B, where $B(i,j) = P(x_i \mid z_i)$

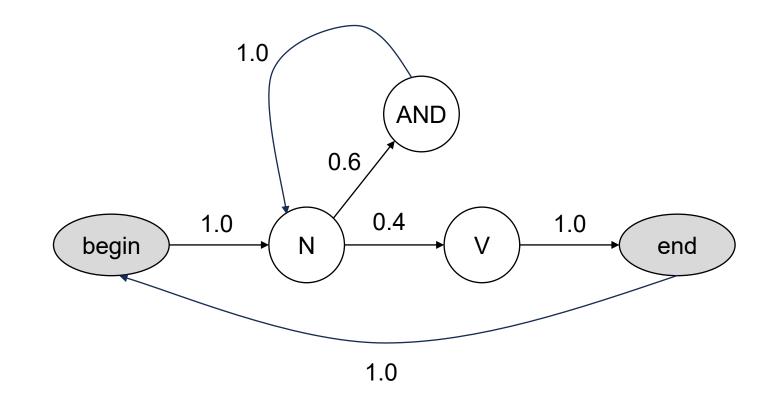
MARKOV EXAMPLE

Imagine a language only containing the following:

- class N, nouns: {wolf, parrot, ...}
- class AND, word {and}
- class V, verbs: {run, fly, ...}

MARKOV EXAMPLE

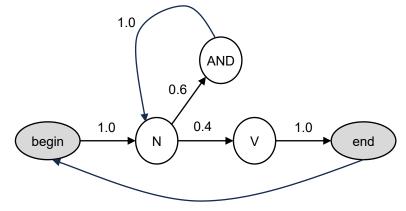
The state transitions and their probabilities look like:


bb: begin

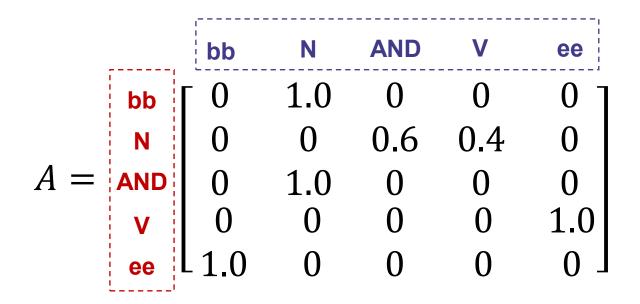
N: {wolf, parrot, ...}

AND: {and}

V: {run, fly, ...}


ee: end

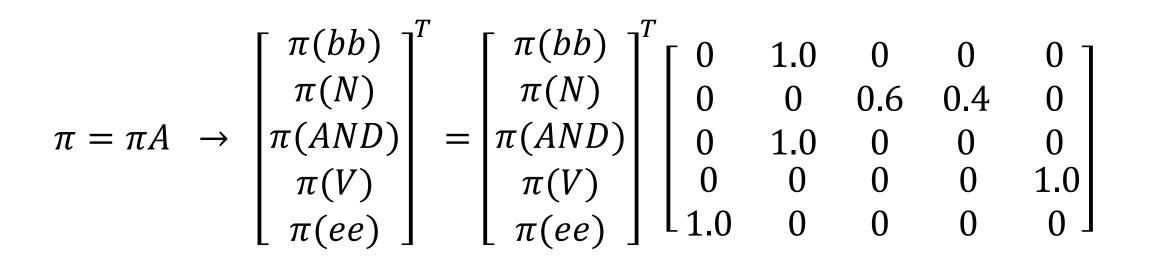
MARKOV EXAMPLE


Now solve the following questions:

- 1. Populate a state transition matrix A.
- 2. Solve this set of equations to determine the stationary distributions, π .
- 3. Use the fraction of time spent in the **bb** or **ee** states to deduce the average number of words in a sentence.

1. TRANSITION MATRIX

End Points



Start Points

When reached the stationary distribution, we have:

$$\pi = \pi A$$
 and $\sum_{s \in S} \pi(s) = 1$

Here π can be treated as a vector of all state probs.

$$\pi = \pi A \rightarrow \begin{bmatrix} \pi(bb) \\ \pi(N) \\ \pi(AND) \\ \pi(V) \\ \pi(ee) \end{bmatrix}^{T} = \begin{bmatrix} \pi(bb) \\ \pi(N) \\ \pi(N) \\ \pi(V) \\ \pi(ee) \end{bmatrix}^{T} \begin{bmatrix} 0 & 1.0 & 0 & 0 & 0 \\ 0 & 0 & 0.6 & 0.4 & 0 \\ 0 & 1.0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.0 \\ 1.0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{cases}
\pi(bb) = \pi(ee) \\
\pi(N) = \pi(bb) + \pi(AND)
\end{cases}$$

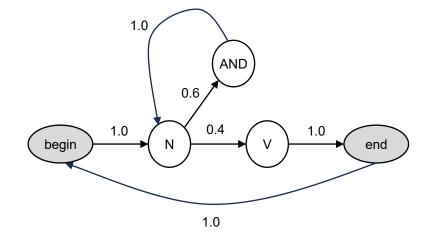
$$\frac{\pi(AND) = 0.6\pi(N)}{\pi(V) = 0.4\pi(N)}$$

$$\frac{\pi(V) = 0.4\pi(N)}{\pi(ee) = \pi(V)}$$

$$\begin{cases}
\pi(bb) = 0.4\pi(N) \\
\pi(N) = \pi(N) \\
\pi(AND) = 0.6\pi(N) \\
\pi(V) = 0.4\pi(N) \\
\pi(ee) = 0.4\pi(N)
\end{cases}$$

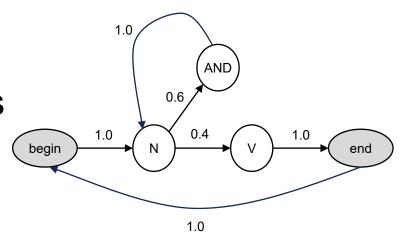
$$\begin{cases}
\pi(bb) = 0.4\pi(N) \\
\pi(N) = \pi(N) \\
\pi(AND) = 0.6\pi(N) \\
\pi(V) = 0.4\pi(N) \\
\pi(ee) = 0.4\pi(N)
\end{cases}$$

$$\sum_{s \in S} \pi(s) = 1$$


$$\rightarrow \pi(bb) + \pi(N) + \pi(AND) + \pi(V) + \pi(ee) = 1$$
2

Combine (1) and (2), we get:

$$0.4\pi(N) + \pi(N) + 0.6\pi(N) + 0.4\pi(N) + 0.4\pi(N) = 1$$
$$2.8\pi(N) = 1$$
$$\pi(N) = \frac{5}{14}$$


Finally we have:

$$\begin{cases} \pi(bb) = 0.4\pi(N) = \frac{1}{7} \\ \pi(N) = \frac{5}{14} \\ \pi(AND) = 0.6\pi(N) = \frac{3}{14} \\ \pi(V) = 0.4\pi(N) = \frac{1}{7} \\ \pi(ee) = 0.4\pi(N) = \frac{1}{7} \end{cases}$$

3. AVERAGE SENTENCE LENGTH

We just need to find the average number of **bb** OR **ee** states in the sequence (as all sentences must have 1 **bb** and 1 **ee**).

$$\pi(bb) = \pi(ee) = \frac{1}{7}$$
$$|\overline{\pi(bb)}| = \frac{1}{\pi(bb)} = 7$$

Remember **bb** and **ee** don't count as words:

$$L = \left| \overline{\pi(bb)} \right| - 2 = 5$$

Α	В	С	D
12	5	0	3

1. What is required to create a good ensemble?

- (a) Some independence between members of the ensemble.
- (b) A data resampling technique to train members of the ensemble.
- (c) Strong individual learners in the ensemble.
- (d) Weak individual learners in the ensemble.

$$\mathrm{Var}\Big(rac{1}{M}\sum_{m=1}^M h_m\Big)pprox
ho\sigma^2+rac{1-
ho}{M}\sigma^2$$
 , where ho is the correlation factor

Data resampling is not necessary (random forest uses random features)

Α	В	С	D
1	12	2	5

2. Which of these does not describe an ensemble technique?

- (a) For each learner, change the weights of the different samples, pushing the learning to form a different decision boundary. AdaBoost
- (b) For each learner, find the principal components of the dataset and drop low variance features.
- (c) For each learner, resample observed samples with replacement, changing the data distribution. Bagging
- (d) For each learner, select a subset of columns, randomly dropping features.

Random Forest

Α	В	С	D
0	3	0	17

- 3. Which of these statements about ensemble techniques and the biasvariance trade-off is false?
- (a) Bagging reduces the variance of the training dataset for each ensemble member.
- (b) Boosting can ensemble <u>high-bias models</u> to draw complex decision boundaries within datasets that have high variance.
- (c) Random forests reduce the variance of the training dataset for each ensemble member.
- (d) Adaboost works best with <u>strong learners</u> that already capture the variance of the dataset on their own.

$$ext{Var}\Big(rac{1}{M}\sum_{m=1}^M h_m\Big)pprox
ho\sigma^2+rac{1-
ho}{M}\sigma^2$$

Easy to overfit on strong learners.

Α	В	С	D
2	2	13	3

- 4. Which of these statements about (regular, not hidden) Markov models is false?
- (a) A <u>time-invariant</u> markov model only looks at the-chain of events within a finite number of steps. N-gram
- (b) A <u>0-gram</u> Markov chain prediction has no dependency upon past tokens.
- (c) Training n-gram models with larger n takes more computation, but not more space or data. scales exponentially
- (d) As the length of n-grams grow, the training data required to fill the transition matrix rapidly grows.

Assume 3-grams with 5 states, then the number of paths is 5³=125

Α	В	С	D
2	0	8	10

- 5. Which of these statements about a hidden Markov model with 3 hidden states and a vocabulary of 5 observable tokens is true?
- (a) The transition matrix, A, is size 3x5.
- (b) The emission matrix, B, is size 5x5. 3x5
- (c) The parameters of the HMM can be trained with the EM algorithm.
- (d) B and C are both true.

Transition matrix: probabilities transiting to the next state.

Emission matrix: probabilities of all states during different time steps.

6) Consider a set of datapoints with the given x values, classes, and current weights while creating an Adaboost ensemble of decision stumps.

A	В	C
0	1	2
-1	1	-1
0.25	0.25	0.5
	0 -1	0 1 -1 1

6.1) A decision stump with polarity=1 will classify anything with values < its boundary value as class -1 and any other points as class 1. A stump with polarity=-1 will do the opposite. Using the points in the table, what are all of the possible weighted errors for decision stumps at each x value and polarity?

Points	A	В	C
x	0	1	2
class	-1	1	-1
weight	0.25	0.25	0.5

For Polarity=1

$$X=1$$

$$A(-1) B(1) C(1)$$

$$e=0 e=0 e=0.50$$
Total error=0.5

$$X=2$$

$$A(-1) B(-1) C(1)$$

$$e=0 e=0.25 e=0.50$$
Total error=0.75

6.2) Which of those stumps and polarity will be added into the ensemble?	Identify the stum	p by its x val	lue and pola	arity.
	Probability Control			
6.3) For simplicity, assign your stump a confidence of $\alpha = 0.7$. It is added first is $x=2$, polarity=-1, and $\alpha = 0.5$. The second is $x=1$, polarity=1, an classify the three points. Voting is done by summing the confidence-weighted and class for each point below.	into an existing end $\alpha = 0.5$. Use this ghted votes and ta	semble with to s ensemble of king the sign	two stumps. three stum Show the	. The
Point A:				
Point B:				
Point C:				

6.2) Which of those stumps and polarity will be added into the ensemble? Identify the stump by its x value and polarity.

Polarity=-1, X=0 OR 2

Just pick up the model with lowest sum error

6.3) For simplicity, assign your stump a confidence of $\alpha = 0.7$. It is added into an existing ensemble with two stumps. The first is x=2, polarity=-1, and $\alpha = 0.5$. The second is x=1, polarity=1, and $\alpha = 0.5$. Use this ensemble of three stumps to classify the three points. Voting is done by summing the confidence-weighted votes and taking the sign. Show the sum and class for each point below.

Point A: ____

Point B:

Point C: ____

Points	A	В	C
x	0	1	2
class	-1	1	-1
weight	0.25	0.25	0.5

w=0.25 w=0.50 W=0.50

X=2, Polarity=-1,
$$\alpha$$
=0.5

X=1, Polarity=1,
$$\alpha$$
=0.5

Points	A	В	C
x	0	1	2
class	-1	1	-1
weight	0.25	0.25	0.5

w=0.25	w=0.25	w = 0.50	
A(-1)	B(1)	C(-1)	
0	 1	2	

(Another situation)

$$X=2$$
, Polarity=-1, $\alpha=0.7$

X

X=2, Polarity=-1,
$$\alpha$$
=0.5

X=1, Polarity=1,
$$\alpha$$
=0.5

6.2) Which of those stumps and polarity will be added into the ensemble? Identify the stump by its x value and polarity.

Polarity=-1, X=0 OR 2

Just pick up the model with lowest sum error

6.3) For simplicity, assign your stump a confidence of $\alpha = 0.7$. It is added into an existing ensemble with two stumps. The first is x=2, polarity=-1, and $\alpha = 0.5$. The second is x=1, polarity=1, and $\alpha = 0.5$. Use this ensemble of three stumps to classify the three points. Voting is done by summing the confidence-weighted votes and taking the sign. Show the sum and class for each point below.

Both are correct.

Point C: ____-1, s=-0.7 OR -1,s=-0.7

Q&A